Monatshefte für Chemie 116, 1125-1127 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985

On the Third Fundamental Band of Li⁺ Translational Vibration in Lithium Hydrogen Oxalate Monohydrate

Short Communication

Yoshiyuki Hase^{a,*} and Marcia L. A. Temperini^b

^a Instituto de Química, Universidade Estadual de Campinas, 13100 Campinas, SP, Brasil

^b Instituto de Química, Universidade de São Paulo, 01000 São Paulo, SP, Brasil

(Received 24 March 1985. Accepted 14 May 1985)

The third Li⁺ translational mode of lattice vibration of lithium hydrogen oxalate monohydrate has been assigned to the band at about $383/360 \text{ cm}^{-1}$ taking the characteristic ⁶Li/⁷Li isotope band shifts into consideration.

(Keywords: Lithium hydrogen oxalate monohydrate; Vibrational spectral data; Li⁺ translational vibration; Isotope effects)

Über die Zuordnung einer der drei translatorischen Li⁺-Moden in Lithiumhydrogenoxalat-Monohydrat (Kurze Mitteilung)

Es wurden die IR-Spektren der Li- und H-isotopen Lithiumhydrogenoxalat-Monohydrate bei 100 K und 300 K gemessen. Einer der drei translatorischen Moden wird einer Bande zugeordnet, die bei Berücksichtigung der ⁶Li/⁷Li Isotopenverschiebung bei 383/360 cm⁻¹ auftritt.

Since lithium hydrogen oxalate monohydrate, $LiXC_2O_4 \cdot X_2O$, where X = H and D, cystallizes in a triclinic lattice of space group P1 (C₁¹) containing one formula unit in an unit cell^{1,2}, the Li⁺ site is situated in crystallographically general position, and accordingly three fundamental bands of lattice vibration with respect to the Li⁺ site translation are expected in vibrational spectroscopy. Previously, on the basis of the isotope band shifts among ⁶LiHC₂O₄ · H₂O, ⁷LiHC₂O₄ · H₂O, and ⁷LiDC₂O₄ · D₂O, *Villepin* and *Novak* assigned, reasonably, two ⁶Li/⁷Lisensitive bands at about 450/425 and 300/290 cm⁻¹ as the Li⁺ lattice

vibrations³. However, the assignment for the ${}^{6}\text{Li}/{}^{7}\text{Li}$ -sensitive bands, according to *Villepin* and *Novak*, at about 383/350 and 360/336 cm⁻¹, as a result of vibrational mode coupling between the COO group wagging and the remaining Li⁺ translational vibrations, may be questionable since the appearances of these bands are not very consistent among the observed spectra.

Fig. 1. Infrared spectra (from 540 to 260 cm^{-1}) measured at 300 K (-----) and 100 K (-----) of ⁶LiHC₂O₄·H₂O, ⁷LiHC₂O₄·H₂O, ⁶LiDC₂O₄·D₂O, and ⁷LiDC₂O₄·D₂O

Fig. 1 shows the infrared spectra, from 540 to 260 cm^{-1} , measured for ${}^{6}\text{LiHC}_{2}\text{O}_{4} \cdot \text{H}_{2}\text{O}$, ${}^{7}\text{LiHC}_{2}\text{O}_{4} \cdot \text{H}_{2}\text{O}$, ${}^{6}\text{LiDC}_{2}\text{O}_{4} \cdot \text{D}_{2}\text{O}$, and ${}^{7}\text{LiDC}_{2}\text{O}_{4} \cdot \text{D}_{2}\text{O}$ at 300 and 100 K. The observed infrared and *Raman* spectral data in the region of the Li⁺ translational lattice vibrations are listed in Table 1.

At first it should be noted that the infrared band at 336 cm^{-1} , observed for ⁷LiHC₂O₄·H₂O at 300 K by *Villepin* and *Novak*³, is never found in our any measurements. On the other hand, the low-temperature infrared band at 383 cm^{-1} of ⁶LiHC₂O₄·H₂O, which is absent in the spectral data for ⁷LiHC₂O₄·H₂O and ⁷LiDC₂O₄·H₂O, is also clearly observed for ⁶LiDC₂O₄·D₂O. The infrared intense band at about 360 cm^{-1} is found for all four isotopically substituted salts without any characteristic H/D and/or ⁶Li/⁷Li isotope band shifts, and consequently assigned as one of the $XC_2O_4^-$ site internal vibrations. Here the band at about 383 cm^{-1} is attributable to the third Li⁺ translational vibration of the ⁶Li-salts. The corresponding band of the ⁷Li-salts is shifted by the ordinary mass effect to the 360 cm^{-1} region and accidentally degenerated with the internal vibration. Taking into account the wavenumber differences between the

⁶ LiHC ₂ O ₄ ·H ₂ O			⁷ LiHC ₂ O ₄ ·H ₂ O			
IR 300 K	IR 100 K	Raman 300 K	IR 300 K	IR 100 K	<i>Raman</i> 300 K	
444 m	456 s	445 vw	420 m	432 s	423 vw	T' Li ⁺
357 s	384 s 361 s	362 yw	355 s	360 s	357 vw	T' Li+
293 m	93 m 303 s	502 VW	278 m	290 s	<i>551</i> VW	T' Li+
⁶ LiDC ₂ O ₄ ·D ₂ O			$^{7}\text{LiDC}_{2}\text{O}_{4}\cdot\text{D}_{2}\text{O}$			
IR 300 K	IR 100 K	<i>Raman</i> 300 K	IR 300 K	IR 100 K	<i>Raman</i> 300 K	
440 m	453 m	444 vw	416 m	428 s	418 vw	T' Li+
358 s	382 s 362 s	360 ym	354 s	357 s	357 111	T' Li+
286 m	295 s	200 1 1	277 m	285 s	557 11	T' Li+

Table 1. Observed wavenumbers (in cm^{-1}) for LiXC₂O₄·X₂O

 Li^+ lattice vibrations at 300 and 100 K, the Li^+ band in question at room temperature is expected in the 360 cm^{-1} region and the accidental degeneracy can also be considered.

Experimental

The four isotopically substituted salts of $\text{Li}XC_2O_4 \cdot X_2O$ were prepared by the usual method described in ⁴.

The infrared spectra were measured at 300 and 100 K as Nujol mulls on a Perkin-Elmer IR 180 spectrophotometer. The spectral resolution for most measurements was typically 2 cm^{-1} . The *Raman* spectra were measured at 300 K, on a Cary 82 laser *Raman* spectrometer equipped with a Spectra Physics 165 argon ion laser (514.5 nm) as the excitation source. The *Raman* spectral resolution was typically 5 cm^{-1} in the Li⁺ lattice mode region.

Acknowledgement

Y. H. acknowledges the award by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brasil) for a research fellowship.

References

- ¹ Follner H., Z. anorg. allg. Chem. 373, 198 (1970).
- ² Thomas J. O., Acta Crystallogr. **B28**, 2037 (1972).
- ³ De Villepin J., Novak A., J. Mol. Struct. 30, 255 (1976).
- ⁴ Hase Y., Monatsh. Chem. 114, 541 (1983).